Selective chemical functional probes of granzymes A and B reveal granzyme B is a major effector of natural killer cell-mediated lysis of target cells.

نویسندگان

  • Sami Mahrus
  • Charles S Craik
چکیده

The mechanism of target cell lysis in cytotoxic lymphocyte-mediated death is not well understood, and the role of granzymes in this process is unclear. Chemical functional probes were thus prepared for the major granzymes A and B to deconvolute their role in natural killer cell-mediated lysis of target cells. These biotinylated and substrate specificity-based diphenyl phosphonates allowed facile evaluation of selectivity through activity-based profiling in cell lysates and intact cells. Both inhibitors were found to be extremely selective in vitro and in cells. Use of these inhibitors in cell-based assays revealed granzyme A to be a minor effector and granzyme B to be a major effector of target cell lysis by natural killer cells. These studies indicate that the proapoptotic granzyme B functions also as a pronecrotic effector of target cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Granzyme B activity in target cells detects attack by cytotoxic lymphocytes.

Lymphocyte-mediated cytotoxicity via granule exocytosis operates by the perforin-mediated transfer of granzymes from CTLs and NK cells into target cells where caspase activation and other death pathways are triggered. Granzyme B (GzB) is a major cytotoxic effector in this pathway, and its fate in target cells has been studied by several groups using immunodetection. In this study, we have used ...

متن کامل

The target cell nucleus is not required for cell-mediated granzyme- or Fas-based cytotoxicity

The requirement for target cell nuclei in the two apoptotic death pathways used by cytotoxic lymphocytes was tested using model effector systems in which the granzyme and Fas pathways of target damage are isolated. Mast cell tumors expressing granzymes A and B in addition to cytolysin/perforin lysed tumor target cells about 10-fold more efficiently than comparable effector cells without granzym...

متن کامل

The granzyme B-serglycin complex from cytotoxic granules requires dynamin for endocytosis.

Cytotoxic T lymphocytes and natural killer cells destroy target cells via the directed exocytosis of lytic effector molecules such as perforin and granzymes. The mechanism by which these proteins enter targets is uncertain. There is ongoing debate over whether the most important endocytic mechanism is nonspecific or is dependent on the cation-independent mannose 6-phosphate receptor. This study...

متن کامل

EGFR-Targeted Granzyme B Expressed in NK Cells Enhances Natural Cytotoxicity and Mediates Specific Killing of Tumor Cells

Natural killer (NK) cells are highly specialized effectors of the innate immune system that hold promise for adoptive cancer immunotherapy. Their cell killing activity is primarily mediated by the pro-apoptotic serine protease granzyme B (GrB), which enters targets cells with the help of the pore-forming protein perforin. We investigated expression of a chimeric GrB fusion protein in NK cells a...

متن کامل

Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis.

Cytotoxic T lymphocytes and natural killer cells destroy target cells via the polarized exocytosis of lytic effector proteins, perforin and granzymes, into the immunologic synapse. How these molecules enter target cells is not fully understood. It is debated whether granzymes enter via perforin pores formed at the plasma membrane or whether perforin and granzymes are first endocytosed and granz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry & biology

دوره 12 5  شماره 

صفحات  -

تاریخ انتشار 2005